Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(4): eadi0617, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38266091

RESUMEN

The extent of littoral influence on lake gas dynamics remains debated in the aquatic science community due to the lack of direct quantification of lateral gas transport. The prevalent assumption of diffusive horizontal transport in gas budgets fails to explain anomalies observed in pelagic gas concentrations. Here, we demonstrate through high-frequency measurements in a eutrophic lake that daily convective horizontal circulation generates littoral-pelagic advective gas fluxes one order of magnitude larger than typical horizontal fluxes used in gas budgets. These lateral fluxes are sufficient to redistribute gases at the basin-scale and generate concentration anomalies reported in other lakes. Our observations also contrast the hypothesis of pure, nocturnal littoral-to-pelagic exchange by showing that convective circulation transports gases such as oxygen and methane toward both the pelagic and littoral zones during the daytime. This study challenges the traditional pelagic-centered models of aquatic systems by showing that convective circulation represents a fundamental lateral transport mechanism to be integrated into gas budgets.

2.
PLoS One ; 18(11): e0281828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37939036

RESUMEN

Lake Tanganyika's pelagic fish sustain the second largest inland fishery in Africa and are under pressure from heavy fishing and global warming related increases in stratification. The strength of water column stratification varies regionally, with a more stratified north and an upwelling-driven, biologically more productive south. Only little is known about whether such regional hydrodynamic regimes induce ecological or genetic differences among populations of highly mobile, pelagic fish inhabiting these different areas. Here, we examine whether the regional contrasts leave distinct isotopic imprints in the pelagic fish of Lake Tanganyika, which may reveal differences in diet or lipid content. We conducted two lake-wide campaigns during different seasons and collected physical, nutrient, chlorophyll, phytoplankton and zooplankton data. Additionally, we analyzed the pelagic fish-the clupeids Stolothrissa tanganicae, Limnothrissa miodon and four Lates species-for their isotopic and elemental carbon (C) and nitrogen (N) compositions. The δ13C values were significantly higher in the productive south after the upwelling/mixing period across all trophic levels, implying that the fish have regional foraging grounds, and thus record these latitudinal isotope gradients. By combining our isotope data with previous genetic results showing little geographic structure, we demonstrate that the fish reside in a region for a season or longer. Between specimens from the north and south we found no strong evidence for varying trophic levels or lipid contents, based on their bulk δ15N and C:N ratios. We suggest that the development of regional trophic or physiological differences may be inhibited by the lake-wide gene flow on the long term. Overall, our findings show that the pelagic fish species, despite not showing evidence for genetic structure at the basin scale, form regional stocks at the seasonal timescales. This implies that sustainable management strategies may consider adopting regional fishing quotas.


Asunto(s)
Carbono , Lagos , Animales , Tanzanía , Isótopos , Lípidos , Cadena Alimentaria , Peces
3.
Nat Commun ; 14(1): 6591, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852975

RESUMEN

The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys. Here, we examine the distribution of nitrogen fixation in Lake Tanganyika - a model system with well-defined hydrodynamic regimes. We report that nitrogen fixation is five times higher under stratified than under upwelling conditions. Under stratified conditions, the limited resupply of inorganic nitrogen to surface waters, combined with greater light penetration, promotes the activity of bloom-forming photoautotrophic diazotrophs. In contrast, upwelling conditions support predominantly heterotrophic diazotrophs, which are uniquely suited to chemotactic foraging in a more dynamic nutrient landscape. We suggest that these hydrodynamic regimes (stratification versus mixing) play an important role in governing both the rates and the mode of nitrogen fixation.


Asunto(s)
Lagos , Fijación del Nitrógeno , Hidrodinámica , Tanzanía , Nitrógeno
4.
mSphere ; 7(1): e0101321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107340

RESUMEN

The nitrogen (N) cycle is of global importance, as N is an essential element and a limiting nutrient in terrestrial and aquatic ecosystems. Excessive anthropogenic N fertilizer usage threatens sensitive downstream aquatic ecosystems. Although freshwater lake sediments remove N through various microbially mediated processes, few studies have investigated the microbial communities involved. In an integrated biogeochemical and microbiological study on a eutrophic and oligotrophic lake, we estimated N removal rates from pore water concentration gradients in sediments. Simultaneously, the abundance of different microbial N transformation genes was investigated using metagenomics on a seasonal and spatial scale. We observed that contrasting nutrient concentrations in sediments were associated with distinct microbial community compositions and significant differences in abundances of various N transformation genes. For both characteristics, we observed a more pronounced spatial than seasonal variability within each lake. The eutrophic Lake Baldegg showed a higher denitrification potential with higher nosZ gene (N2O reductase) abundances and higher nirS:nirK (nitrite reductase) ratios, indicating a greater capacity for complete denitrification. Correspondingly, this lake had a higher N removal efficiency. The oligotrophic Lake Sarnen, in contrast, had a higher potential for nitrification. Specifically, it harbored a high abundance of Nitrospira, including some with the potential for comammox. Our results demonstrate that knowledge of the genomic N transformation potential is important for interpreting N process rates and understanding how the lacustrine sedimentary N cycle responds to variations in trophic conditions. IMPORTANCE Anthropogenic nitrogen (N) inputs can lead to eutrophication in surface waters, especially in N-limited coastal ecosystems. Lakes effectively remove reactive N by transforming it to N2 through microbial denitrification or anammox. The rates and distributions of these microbial processes are affected by factors such as the amount and quality of settling organic material and nitrate concentrations. However, the microbial communities mediating these N transformation processes in freshwater lake sediments remain largely unknown. We provide the first seasonally and spatially resolved metagenomic analysis of the N cycle in sediments of two lakes with different trophic states. We show that lakes with different trophic states select for distinct communities of N-cycling microorganisms with contrasting functional potentials for N transformation.


Asunto(s)
Lagos , Microbiota , Eutrofización , Lagos/microbiología , Nitratos/análisis , Nitrógeno
5.
Nature ; 600(7887): 105-109, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34732889

RESUMEN

Symbiotic N2-fixing microorganisms have a crucial role in the assimilation of nitrogen by eukaryotes in nitrogen-limited environments1-3. Particularly among land plants, N2-fixing symbionts occur in a variety of distantly related plant lineages and often involve an intimate association between host and symbiont2,4. Descriptions of such intimate symbioses are lacking for seagrasses, which evolved around 100 million years ago from terrestrial flowering plants that migrated back to the sea5. Here we describe an N2-fixing symbiont, 'Candidatus Celerinatantimonas neptuna', that lives inside seagrass root tissue, where it provides ammonia and amino acids to its host in exchange for sugars. As such, this symbiosis is reminiscent of terrestrial N2-fixing plant symbioses. The symbiosis between Ca. C. neptuna and its host Posidonia oceanica enables highly productive seagrass meadows to thrive in the nitrogen-limited Mediterranean Sea. Relatives of Ca. C. neptuna occur worldwide in coastal ecosystems, in which they may form similar symbioses with other seagrasses and saltmarsh plants. Just like N2-fixing microorganisms might have aided the colonization of nitrogen-poor soils by early land plants6, the ancestors of Ca. C. neptuna and its relatives probably enabled flowering plants to invade nitrogen-poor marine habitats, where they formed extremely efficient blue carbon ecosystems7.


Asunto(s)
Alismatales/microbiología , Organismos Acuáticos/metabolismo , Bacterias/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Simbiosis , Alismatales/metabolismo , Aminoácidos/metabolismo , Amoníaco/metabolismo , Organismos Acuáticos/microbiología , Ecosistema , Endófitos/metabolismo , Mar Mediterráneo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
6.
Nat Commun ; 12(1): 4774, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362886

RESUMEN

Biological N2 fixation was key to the expansion of life on early Earth. The N2-fixing microorganisms and the nitrogenase type used in the Proterozoic are unknown, although it has been proposed that the canonical molybdenum-nitrogenase was not used due to low molybdenum availability. We investigate N2 fixation in Lake Cadagno, an analogue system to the sulfidic Proterozoic continental margins, using a combination of biogeochemical, molecular and single cell techniques. In Lake Cadagno, purple sulfur bacteria (PSB) are responsible for high N2 fixation rates, to our knowledge providing the first direct evidence for PSB in situ N2 fixation. Surprisingly, no alternative nitrogenases are detectable, and N2 fixation is exclusively catalyzed by molybdenum-nitrogenase. Our results show that molybdenum-nitrogenase is functional at low molybdenum conditions in situ and that in contrast to previous beliefs, PSB may have driven N2 fixation in the Proterozoic ocean.


Asunto(s)
Chromatiaceae/metabolismo , Molibdeno/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Biomasa , Ciclo del Carbono , Dióxido de Carbono , Tamaño de la Célula , Chromatiaceae/genética , Metagenoma , Modelos Teóricos , Nitrogenasa/metabolismo , Océanos y Mares , Análisis de la Célula Individual
7.
Water Res ; 200: 117300, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34107428

RESUMEN

Geogenic arsenic (As) contamination of groundwater is a health threat to millions of people worldwide, particularly in alluvial regions of South and Southeast Asia. Mitigation measures are often hindered by high heterogeneities in As concentrations, the cause(s) of which are elusive. Here we used a comprehensive suite of stable isotope analyses and hydrogeochemical parameters to shed light on the mechanisms in a typical high-As Holocene aquifer near Hanoi where groundwater is advected to a low-As Pleistocene aquifer. Carbon isotope signatures (δ13C-CH4, δ13C-DOC, δ13C-DIC) provided evidence that fermentation, methanogenesis and methanotrophy are actively contributing to the As heterogeneity. Methanogenesis occurred concurrently where As levels are high (>200 µg/L) and DOC-enriched aquitard pore water infiltrates into the aquifer. Along the flowpath to the Holocene/Pleistocene aquifer transition, methane oxidation causes a strong shift in δ13C-CH4 from -87‰ to +47‰, indicating high reactivity. These findings demonstrate a previously overlooked role of methane cycling and DOC infiltration in high-As aquifers.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Carbono , Monitoreo del Ambiente , Humanos , Metano , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 782: 146738, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33836377

RESUMEN

Climate warming is causing rapid spatial expansion of ocean warm pools from equatorial latitudes towards the subtropics. Sedentary coral reef inhabitants in affected areas will thus be trapped in high temperature regimes, which may become the "new normal". In this study, we used clownfish Amphiprion ocellaris as model organism to study reef fish mechanisms of thermal adaptation and determine how high temperature affects multiple lipid aspects that influence physiology and thermal tolerance. We exposed juvenile fish to two different experimental conditions, implemented over 28 days: average tropical water temperatures (26 °C, control) or average warm pool temperatures (30 °C). We then performed several analyses on fish muscle and liver tissues: i) total lipid content (%), ii) lipid peroxides, iii) fatty acid profiles, iv) lipid metabolic pathways, and v) weight as body condition metric. Results showed that lipid storage capacity in A. ocellaris was not affected by elevated temperature, even in the presence of lipid peroxides in both tissues assessed. Additionally, fatty acid profiles were unresponsive to elevated temperature, and lipid metabolic networks were consequently well conserved. Consistent with these results, we did not observe changes in fish weight at elevated temperature. There were, however, differences in fatty acid profiles between tissue types and over time. Liver showed enhanced α-linolenic and linoleic acid metabolism, which is an important pathway in stress response signaling and modulation on environmental changes. Temporal oscillations in fatty acid profiles are most likely related to intrinsic factors such as growth, which leads to the mobilization of energetic reserves between different tissues throughout time according to organism needs. Based on these results, we propose that the stability of fatty acid profiles and lipid metabolic pathways may be an important thermal adaptation feature of fish exposed to warming environments.


Asunto(s)
Antozoos , Ácidos Grasos , Animales , Arrecifes de Coral , Lípidos , Redes y Vías Metabólicas , Océanos y Mares , Temperatura
9.
Nature ; 591(7850): 445-450, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658719

RESUMEN

Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.


Asunto(s)
Anaerobiosis , Bacterias/metabolismo , Cilióforos/metabolismo , Desnitrificación , Metabolismo Energético , Interacciones Microbiota-Huesped , Simbiosis , Adenosina Trifosfato/metabolismo , Bacterias/genética , Evolución Biológica , Respiración de la Célula , Cilióforos/química , Cilióforos/citología , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/genética , Genoma Bacteriano/genética , Interacciones Microbiota-Huesped/genética , Mitocondrias , Nitratos/metabolismo , Oxígeno/metabolismo , Filogenia
10.
Aquat Sci ; 83(2): 37, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785997

RESUMEN

Freshwater lakes are essential hotspots for the removal of excessive anthropogenic nitrogen (N) loads transported from the land to coastal oceans. The biogeochemical processes responsible for N removal, the corresponding transformation rates and overall removal efficiencies differ between lakes, however, it is unclear what the main controlling factors are. Here, we investigated the factors that moderate the rates of N removal under contrasting trophic states in two lakes located in central Switzerland. In the eutrophic Lake Baldegg and the oligotrophic Lake Sarnen, we specifically examined seasonal sediment porewater chemistry, organic matter sedimentation rates, as well as 33-year of historic water column data. We find that the eutrophic Lake Baldegg, which contributed to the removal of 20 ± 6.6 gN m-2 year-1, effectively removed two-thirds of the total areal N load. In stark contrast, the more oligotrophic Lake Sarnen contributed to 3.2 ± 4.2 gN m-2 year-1, and had removed only one-third of the areal N load. The historic dataset of the eutrophic lake revealed a close linkage between annual loads of dissolved N (DN) and removal rates (NRR = 0.63 × DN load) and a significant correlation of the concentration of bottom water nitrate and removal rates. We further show that the seasonal increase in N removal rates of the eutrophic lake correlated significantly with seasonal oxygen fluxes measured across the water-sediment interface (R2 = 0.75). We suggest that increasing oxygen enhances sediment mineralization and stimulates nitrification, indirectly enhancing denitrification activity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00027-021-00795-7.

11.
Nat Commun ; 12(1): 830, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547297

RESUMEN

In marine and freshwater oxygen-deficient zones, the remineralization of sinking organic matter from the photic zone is central to driving nitrogen loss. Deep blooms of photosynthetic bacteria, which form the suboxic/anoxic chlorophyll maximum (ACM), widespread in aquatic ecosystems, may also contribute to the local input of organic matter. Yet, the influence of the ACM on nitrogen and carbon cycling remains poorly understood. Using a suite of stable isotope tracer experiments, we examined the transformation of nitrogen and carbon under an ACM (comprising of Chlorobiaceae and Synechococcales) and a non-ACM scenario in the anoxic zone of Lake Tanganyika. We find that the ACM hosts a tight coupling of photo/litho-autotrophic and heterotrophic processes. In particular, the ACM was a hotspot of organic matter remineralization that controlled an important supply of ammonium driving a nitrification-anammox coupling, and thereby played a key role in regulating nitrogen loss in the oxygen-deficient zone.


Asunto(s)
Ciclo del Carbono/fisiología , Carbono/química , Chlorobi/metabolismo , Ciclo del Nitrógeno/fisiología , Nitrógeno/química , Synechococcus/metabolismo , Compuestos de Amonio/química , Compuestos de Amonio/metabolismo , Anaerobiosis/fisiología , Procesos Autotróficos , Carbono/metabolismo , Chlorobi/química , Clorofila/química , Clorofila/metabolismo , República Democrática del Congo , Ecosistema , Marcaje Isotópico , Lagos/química , Lagos/microbiología , Nitrificación/fisiología , Nitrógeno/metabolismo , Oxidación-Reducción , Synechococcus/química , Tanzanía
12.
Sci Total Environ ; 755(Pt 2): 143500, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33223158

RESUMEN

Coastal lakes (CL) act as limnetic-ß-oligohaline systems located on non-tidal coastlines in fresh and salt water mixing zone. Owing to considerable terrestrial nutrient input and a high autochthonous productivity CLs release greenhouse gases (GHG) to the ambient atmosphere, however, neither emission from the system was assessed nor controls on the emission were recognized so far. In this study we attempted to quantify diffusive emissions of CH4, CO2 and N2O from CLs based on data collected from seven lakes located on a south coast of the Baltic Sea in Poland. Lake water samples were collected with quarterly resolution along salinity, water depth and wind fetch gradients. From our data it emerged that the concentrations of GHGs were determined by temperature. CH4 showed dependence on salinity, lake water depth and wind fetch. N2O was controlled by dissolved O2 and NO3- and CO2 was largely related to wind fetch. It also appeared that concentrations of N2O and CO2 were influenced by terrestrial nutrient input. The mean fluxes of CH4, CO2 and N2O for the whole system were 21.7 mg·m-2·d-1, 12.7 g·m-2·d-1 and 0.74 mg·m-2·d-1, respectively which was equivalent to 7.9 g CH4·m-2·y-1, 4.6 kg CO2·m-2·y-1 and 269 mg N2O·m-2·y-1. CH4 and N2O were released throughout the year and CO2 was predominantly emitted during winter. We showed that diffusive emissions of the GHGs showed relationships to the surface area of the lakes as well as the ratio of catchment area to lake area (CA/LA). The study would benefit from further extension with higher resolution analyses of the lakes over longer timescales and quantification of ebullitive GHG emission (CH4 in particular).

13.
Science ; 364(6443): 886-889, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31147520

RESUMEN

Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic acid (DHA), an essential ω-3 fatty acid, can constrain freshwater colonization by marine fishes. Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase gene Fads2 in stickleback lineages that subsequently colonized and radiated in freshwater habitats, but not in close relatives that failed to colonize. Transgenic manipulation of Fads2 in marine stickleback increased their ability to synthesize DHA and survive on DHA-deficient diets. Multiple freshwater ray-finned fishes also show a convergent increase in Fads2 copies, indicating its key role in freshwater colonization.


Asunto(s)
Adaptación Biológica/genética , Ácidos Docosahexaenoicos/metabolismo , Ácido Graso Desaturasas/genética , Agua Dulce , Duplicación de Gen , Smegmamorpha/fisiología , Animales , Dosificación de Gen , Agua de Mar , Smegmamorpha/genética , Smegmamorpha/metabolismo
14.
Environ Microbiol ; 21(5): 1611-1626, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30689286

RESUMEN

Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light-independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high-resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 µM O2 ·h-1 . Single-cell analyses of lake water incubated with 13 CO2 in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40% of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single-cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments but also that organisms typically considered strict anaerobes may be involved.


Asunto(s)
Chromatiaceae/metabolismo , Lagos/microbiología , Oxígeno/metabolismo , Sulfuros/metabolismo , Aerobiosis , Chromatiaceae/genética , Chromatiaceae/crecimiento & desarrollo , Chromatiaceae/efectos de la radiación , Lagos/análisis , Luz , Oxidación-Reducción , Oxígeno/análisis , Procesos Fototróficos
15.
Proc Natl Acad Sci U S A ; 115(43): 10926-10931, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301807

RESUMEN

Terrestrial paleoclimate archives such as lake sediments are essential for our understanding of the continental climate system and for the modeling of future climate scenarios. However, quantitative proxies for the determination of paleotemperatures are sparse. The relative abundances of certain bacterial lipids, i.e., branched glycerol dialkyl glycerol tetraethers (brGDGTs), respond to changes in environmental temperature, and thus have great potential for climate reconstruction. Their application to lake deposits, however, is hampered by the lack of fundamental knowledge on the ecology of brGDGT-producing microbes in lakes. Here, we show that brGDGTs are synthesized by multiple groups of bacteria thriving under contrasting redox regimes in a deep meromictic Swiss lake (Lake Lugano). This niche partitioning is evidenced by highly distinct brGDGT inventories in oxic vs. anoxic water masses, and corresponding vertical patterns in bacterial 16S rRNA gene abundances, implying that sedimentary brGDGT records are affected by temperature-independent changes in the community composition of their microbial producers. Furthermore, the stable carbon isotope composition (δ13C) of brGDGTs in Lake Lugano and 34 other (peri-)Alpine lakes attests to the widespread heterotrophic incorporation of 13C-depleted, methane-derived biomass at the redox transition zone of mesotrophic to eutrophic lake systems. The brGDGTs produced under such hypoxic/methanotrophic conditions reflect near-bottom water temperatures, and are characterized by comparatively low δ13C values. Depending on climate zone and water depth, lake sediment archives predominated by deeper water/low-13C brGDGTs may provide more reliable records of climate variability than those where brGDGTs derive from terrestrial and/or aquatic sources with distinct temperature imprints.


Asunto(s)
Bacterias/metabolismo , Glicerol/metabolismo , Lagos/microbiología , Lípidos/química , Biomasa , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecología , Sedimentos Geológicos/microbiología , Metano/metabolismo , Oxidación-Reducción , ARN Ribosómico 16S/metabolismo
16.
Environ Microbiol ; 20(7): 2598-2614, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29806730

RESUMEN

Methanotrophic bacteria represent an important biological filter regulating methane emissions into the atmosphere. Planktonic methanotrophic communities in freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with a contribution from alpha-proteobacterial methanotrophs and the NC10 bacteria. The NC10 clade encompasses methanotrophs related to 'Candidatus Methylomirabilis oxyfera', which oxidize methane using a unique pathway of denitrification that tentatively produces N2 and O2 from nitric oxide (NO). Here, we describe a new species of the NC10 clade, 'Ca. Methylomirabilis limnetica', which dominated the planktonic microbial community in the anoxic depths of the deep stratified Lake Zug in two consecutive years, comprising up to 27% of the total bacterial population. Gene transcripts assigned to 'Ca. M. limnetica' constituted up to one third of all metatranscriptomic sequences in situ. The reconstructed genome encoded a complete pathway for methane oxidation, and an incomplete denitrification pathway, including two putative nitric oxide dismutase genes. The genome of 'Ca. M. limnetica' exhibited features possibly related to genome streamlining (i.e. less redundancy of key metabolic genes) and adaptation to its planktonic habitat (i.e. gas vesicle genes). We speculate that 'Ca. M. limnetica' temporarily bloomed in the lake during non-steady-state conditions suggesting a niche for NC10 bacteria in the lacustrine methane and nitrogen cycle.


Asunto(s)
Bacterias Anaerobias/aislamiento & purificación , Desnitrificación , Lagos/microbiología , Metano/metabolismo , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Genoma Bacteriano , Microbiota , Óxido Nítrico/metabolismo , Ciclo del Nitrógeno , Oxidación-Reducción , Microbiología del Agua
17.
Environ Sci Process Impacts ; 19(10): 1278-1291, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28840207

RESUMEN

We monitored CH4 emissions during the ice-free period of an Alpine hydropower reservoir in the Swiss Alps, Lake Klöntal, to investigate mechanisms responsible for CH4 variability and to estimate overall emissions to the atmosphere. A floating eddy-covariance platform yielded total CH4 and CO2 emission rates at high temporal resolution, while hydroacoustic surveys provided no indication of CH4 ebullition. Higher CH4 fluxes (2.9 ± 0.1 mg CH4 per m2 per day) occurred during the day when surface water temperatures were warmer and wind speeds higher than at night. Piston velocity estimates (k600) showed an upper limit at high wind speeds that may be more generally valid also for other lakes and reservoirs with limited CH4 dissolved in the water body: above 2.0 m s-1 a further increase in wind speed did not lead to higher CH4 fluxes, because under such conditions it is not the turbulent mixing and transport that limits effluxes, but the resupply of CH4 to the lake surface. Increasing CH4 fluxes during the warm season showed a clear spatial gradient once the reservoir started to fill up and flood additional surface area. The warm period contributed 27% of the total CH4 emissions (2.6 t CH4 per year) estimated for the full year and CH4 accounted for 63% of carbonic greenhouse gas emissions. Overall, the average CH4 emissions (1.7 to 2.2 mg CH4 per m2 per day determined independently from surface water samplings and eddy covariance, respectively) were small compared to most tropical and some temperate reservoirs. The resulting greenhouse gas (GHG) emissions in CO2-equivalents revealed that electricity produced in the Lake Klöntal power plant was relatively climate-friendly with a low GHG-to-power output ratio of 1.24 kg CO2,eq per MW h compared to 6.5 and 8.1 kg CO2,eq per MW h associated with the operation of solar photovoltaics and wind energy, respectively, or about 980 kg CO2,eq per MW h for coal-fired power plants.


Asunto(s)
Monitoreo del Ambiente/métodos , Gases de Efecto Invernadero/análisis , Metano/análisis , Centrales Eléctricas , Estaciones del Año , Altitud , Dióxido de Carbono/análisis , Clima , Suiza , Viento
18.
ISME J ; 11(9): 2124-2140, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28585934

RESUMEN

Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N2O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.


Asunto(s)
Gammaproteobacteria/metabolismo , Lagos/microbiología , Metano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Lagos/química , Metano/análisis , Oxidación-Reducción , Oxigenasas/genética , Oxigenasas/metabolismo
19.
Sci Adv ; 3(2): e1601897, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28246637

RESUMEN

Bottom-water oxygen supply is a key factor governing the biogeochemistry and community composition of marine sediments. Whether it also determines carbon burial rates remains controversial. We investigated the effect of varying oxygen concentrations (170 to 0 µM O2) on microbial remineralization of organic matter in seafloor sediments and on community diversity of the northwestern Crimean shelf break. This study shows that 50% more organic matter is preserved in surface sediments exposed to hypoxia compared to oxic bottom waters. Hypoxic conditions inhibit bioturbation and decreased remineralization rates even within short periods of a few days. These conditions led to the accumulation of threefold more phytodetritus pigments within 40 years compared to the oxic zone. Bacterial community structure also differed between oxic, hypoxic, and anoxic zones. Functional groups relevant in the degradation of particulate organic matter, such as Flavobacteriia, Gammaproteobacteria, and Deltaproteobacteria, changed with decreasing oxygenation, and the microbial community of the hypoxic zone took longer to degrade similar amounts of deposited reactive matter. We conclude that hypoxic bottom-water conditions-even on short time scales-substantially increase the preservation potential of organic matter because of the negative effects on benthic fauna and particle mixing and by favoring anaerobic processes, including sulfurization of matter.


Asunto(s)
Bacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Compuestos Orgánicos/química , Oxígeno/metabolismo , Bacterias/genética , Bacterias/metabolismo , Mar Negro , Carbono/metabolismo , Clorofila/análisis , Clorofila A , Ecosistema , Sedimentos Geológicos/química , Secuenciación de Nucleótidos de Alto Rendimiento , Oxígeno/análisis , Análisis de Secuencia de ADN
20.
Sci Rep ; 7(1): 313, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28331216

RESUMEN

In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...